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Photonic Qubits

.- Photons can represent Qubits, as
well as electrons

- Photons are more conducive to
quantum networking than electrons

. electrons are more conducive to
computing

- The logical states of 0 or 1 are not
determined by the spin of photons,
but rather by their polarization

. Horizontal Polarization |1)
. Vertical Polarization |0)




What Happens When Two Waves Intersect?

- When two waves intersect, the resulting
displacement of the medium at any
location is the algebraic sum of the
displacements of the individual waves at
that same location :

- Therefore, another algebraic operation
(specifically, a subtraction) can
completely reverse the effects of the
intersection




Photonic QU blts Polarization of Light (3-D Version)

. Photons can represent Qubits, as
well as electrons

. Photons are more conducive to
quantum networking than
electrons (which are more
conducive to computing)

- Logical states of O or 1 are not
determined by spin, but rather by
polarization

.- Horizontal Polarization |1)

. Vertical Polarization |0)




How Are Photons
Entangled?

. The most common approach to
generate entangled photons is
via Spontaneous Parametric

Down Conversmn (SPDC) |n\—
linear crystals N\

. SPDC is an instant optical
process that converts one
photon of higher energy into a
pair of photons of lower energy




Classical Optical Communication
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Quantum Communication via Transporting

Alice Bob




Primary Challenge to Quantum Transport

- Rate decays exponentially
with distance

Rate

. Can we amplify the signal?

. No, because of the No Cloning Theorem

Distance



(One-Way) Quantum Repeaters

* Quantum Repeaters leverage Quantum Error Correction, where encoded quantum information is
transmitted in the form of multi-photon states

Farnty information s included in the multi-photon state

+ Intermediate repeater stations check the incoming state for errors and prepare a fresh encoded
qubit as the output to be sent to the next repeater

» This does NOT violate the No Cloning Theorem, as quantum repeaters perform a multi-qubit

measurement that does not disturb the quantum information in the encoded state, but rather,
retrieves indirect information about a potential error

A photon with Comrected State
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information state
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(Two-Way) Quantum Communication via Teleporting
Initial State

Alice Bob




Quantum Communication via Teleporting

Step 1: Entangle a Pair of Photons and Send One to the Receiver

o@®

Alice

Bob




Quantum Communication via Teleporting

Step 2: Perform Another Entanglement Operation at the Sender

Mote: This step results in a teleportation of
the combination of the states of
qubits Q and A to qubit B

L e

Alice Bob




Quantum Communication via Teleporting
Step 3: Perform a Bell State Measurement at the Sender

Mote: is a mathematical notation for a

tensor product; that is, a product of

Mote: The Bell State Measurement simultaneously: two quantum states, |) and @

- breaks the three-way entanglement,
- collapses the superpositions of gubits Q and A, and
- produces a result of 1 of 4 Bell States

w._l... tp!_ e .tp!-.
~ 4
Alice Bob

The Four Bell States:

@* 1/42)(10)@ |0 1 1)) represented by binary 00
@ 1/v2) (10)®10 1 1)) represented by binary 01
w*) = (1/¥2) (10®@11) +[1)®10)) represented by binary 10
wo) = (1/¥2) (10)®1[1) -11)®10)) represented by binary 11



Quantum Communication via Teleporting

Step 4: Send the Bell State Measurement Result over a Classical Channel

ve UJ
| &
-~ 4 01

Alice ﬁ

The Four Bell States: Bob E’E
@* 1/42) (10)2 10 1 1)) represented by binary 00
@ 1/v2) (|0)®]0 1 1)) represented by binary 01
w*) = (1/42) (10)®@11) +[1)@10)) represented by binary 10
w) = (1/42) (10)®@1]1) -[1)®]0)) represented by binary 11



Quantum Communication via Teleporting

Step 5: Perform a Correction Operation on the Received Qubit (if necessary)

Mote: (X' represents the original state of
the qubit, which has now been
received in its corrected form

| ve LI
X

, 4 01 —

Alice =
The Four Bell States: Bob -
@* 1/42) (10)® |0 1 1)) represented by binary 00 - nothing to correct
@) = (1/¥2) (|10)®]0) - [1)®1)) represented by binary 01 = correct x (only)
W = (1/¥2) (100@1[1) +11)®@10)) represented by binary 10 = correct z (only)
W 1/v2) (100@11) -1 0)) represented by binary 11 = correct (x and z)

Refer to Bloch Sphere diagram for x,y and z axis



Extending Quantum Teleporting
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Entangled Pair

Bob

Charlie

Entangled Pair
(Entanglement Swapping)
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Entangled Pair




Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example




Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example

Elementary link entanglement



Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example

Elementary swapping



Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example

End-to-end entanglement



Quantum Routers & Protocols

Two-Way Entanglement Distribution Network Example

\fﬁil&d ik

Metwork failure event



Quantum Routers & Protocols
Two-Way Entanglement Distribution Network Example

M

Reestablishing end-to-end entanglement



The Key Role of Memory in a Network Switch

- A major component of any Cisco Silicon One ASIC Architecture

1005 Bulter uilization Indepandent of trallic patiem

network switch is memory

- Memory enables:
. Ingress buffering and queuing
. Switching
. Egress buffering and queuing

Fully Shered Un-Lie Hacked Bufter

Large, Deep On-Fackage Facket Buffaring

(everything shaded green represents memory)

Mote: Cisco Silicon One is NOT an ASIC for a
guantum switch, but rather is only being used
as an example to illustrate how extensive
memaory is within switching architectures



Quantum Memory Methods and Storage Times

. Optical Quantum Memory
. milliseconds to seconds.

. Superconducting Qubits
. microseconds to milliseconds.

. Trapped lons

. Seconds to minutes

- Note: techniques such as Quantum
Error Correction may be employed to
extend the effective storage times

Multi-qubit

P P-

Commumcatuon qubit
| Photonic

'; Link

An Example of Optical Quantum Memory
Using Engineered Dlamonds

htios.Jiwewaw.nature com/anciesis41534-022-00637 -




Quantum Networking Challenges by OSI| Layer

Application Cryptography, privacy-preserving computing, enhanced sensing, ...

End-to-end (logical) quantum information transmission

-

Routing, Scheduling
Quantum circuit switching

~ Error correction, Purification
Transporting/Teleporting qubits

| Photon loss, channel noise, hardware noise
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